SMEFT at NLO for the Drell-Yan Process

Ahmed Ismail
Oklahoma State University

October 3, 2019

In Search of New Physics Using SMEFT Argonne National Laboratory

1808.05948, with S. Dawson 1811.12660, with S. Dawson and P.P. Giardino

Using SM processes to limit general NP

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

B, L conservation, MFV → 59 independent dim. 6 operators

Higher dimension operators grow with energy

Look for interference with SM

LHC is already competitive

EFT and the LHC

Indirectly probe new physics, e.g. SMEFT

$$\mathcal{L} \supset g_{\mathrm{SM}}\mathcal{O}_{\mathrm{SM}} + \frac{g_{\mathrm{BSM}}}{\Lambda^2}\mathcal{O}_{\mathrm{BSM}}$$

Standard story: effect of higher dimension operators grows with energy

$$\mathcal{M} \sim g_{\rm SM} + g_{\rm BSM} s / \Lambda^2$$

Interference is dominant contribution

$$|\mathcal{M}|^2 \sim g_{\rm SM}^2 + \frac{g_{\rm SM}g_{\rm BSM}s}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

Look for large effects in tails of distributions

Interference and the SMEFT

What if SM and BSM amplitudes do not interfere?

e.g. transverse gauge bosons

all particles outgoing ignoring masses

different helicity structures

$$\mathcal{O}_W = \epsilon_{abc} W^{\nu a}_{\mu} W^{\rho b}_{\nu} W^{\mu c}_{\rho}$$

actually true for *any* dimension 6 operator contributing to the 3-point amplitude

Global SMEFT fits

Fit to EWPO, LHC diboson and Higgs data shows where LHC bounds already compete with those from LEP

Ellis, Murphy, Sanz, You 1803.03252

Global SMEFT fits

Consistent global fit at one loop will require NLO calculations in SMEFT

1812.07587

Plan

SMEFT interference and its restoration at NLO

Z boson decay

Drell-Yan

Interference suppression

SM and BSM give different helicities for any $2 \rightarrow 2$ process involving a transverse V

<u> </u>	C3.6	DOL
Channel	SM	BSM_6
++++	$arepsilon_V^4$	$arepsilon_V^0$
+++-	ε_V^2	ε_V^0
++	$arepsilon_V^0$	$arepsilon_V^2$
$+\frac{1}{2}-\frac{1}{2}++$	$arepsilon_V^2$	ε_V^0
$+\frac{1}{2}-\frac{1}{2}+-$	ε_V^0	ε_V^2
$+\frac{1}{2}-\frac{1}{2} 0 +$	$arepsilon_V^1$	$arepsilon_V^1$
$+\frac{1}{2}-\frac{1}{2} \ 0 \ 0$	$arepsilon_V^0$	$arepsilon_V^0$
·		·

Channel	SM	BSM ₆				
0+++	$arepsilon_V^3$	$arepsilon_V^1$				
0 + + -	$arepsilon_V^1$	$arepsilon_V^1$				
$0 \ 0 + +$	$arepsilon_V^2$	ε_V^0				
$0 \ 0 + -$	$arepsilon_V^0$	$arepsilon_V^2$				
$0\ 0\ 0\ +$	$arepsilon_V^1$	$arepsilon_V^1$				
$0\ 0\ 0\ 0$	ε_V^0	ε_V^0				
$\epsilon_V = m_V/\sqrt{s}$						

Azatov, Contino, Machado, Riva 1607.05236

$$0 = V_{L}, \phi$$

+, - = V_{T}
+\frac{1}{2}, -\frac{1}{2} = \psi

e.g. in W_TW_T and W_TW_L production, interference between SM and EFT does not grow with s Baglio, Dawson, Lewis 1708.03332

Restoring interference (1) – using decays

Correlations between decay products of gauge bosons

Use azimuthal angles to disentangle full 2 → 4

Intermediate particles with different helicities interfere

Restoring interference (2) – higher order

Go beyond LO

Originally used to probe G³ operator in 3-jet events
Dixon and Shadmi hep-ph/9312363

Adding extra jet to gauge boson production

Azatov, Elias-Miro, Reyimuaji, Venturini 1707.08060

W³ in Z decay at NLO

Suppressed interference in $q q \rightarrow W W$

No tree level contribution, but appears at one loop

also: Z-photon mixing

loop correction

Z bosons at high luminosity

2 × 10⁷ Z bosons recorded at LEP, all experiments and decays

HL-LHC: 5 × 10⁹ leptonic Z events per detector

Opportunity to probe subtle new physics effects, rare decays

NLO Z decay in SMEFT

Keep only HWB and W³ operators for simplicity

Input parameters G_F , M_W , M_Z , M_H , M_t

HWB operator gets contribution from W³ operator at one loop

$$\mathcal{O}_{HWB} = H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{O}_W = \epsilon_{abc} W^{\nu a}_{\mu} W^{\rho b}_{\nu} W^{\mu c}_{\rho}$$

W 2-point function

affects input parameter M_w

Renormalize with MS-bar scheme for EFT operators, on shell scheme for SM parameters

Z decay limits complementary to gauge boson production, despite being only a loop effect

NLO for Drell-Yan

Gauge boson operators at one loop also affect q q $\rightarrow \ell \ell$, $\ell \nu$

see also Farina et al., 1609.08157

SMEFT operators for Drell-Yan

- Four-fermion interactions
- Bosonic operators contributing at tree/loop level, including those affecting input parameters G_F , M_W , M_Z

	\mathcal{O}_W	$\epsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$	$\mathcal{O}_{\phi D}$	$\left(\phi^{\dagger}D^{\mu}\phi\right)^{*}\left(\phi^{\dagger}D_{\mu}\phi\right)$	$O_{\phi WB}$	$\left(\phi^\dagger au^I \phi\right)^* W^I_{\mu u} B^{\mu u}$
	$\mathcal{O}_{\phi l}^{(3)}$	$\left (\phi^\dagger i \overleftrightarrow{D}_\mu^I \phi) (\bar{l}_p' \tau^I \gamma^\mu l_r') \right $	$\left \mathcal{O}_{lq}^{(1)} \right _{p,r,s,t}$	$(\bar{l}_p'\gamma_\mu l_r')(\bar{q}_s'\gamma^\mu q_t')$	$egin{array}{c} \mathcal{O}_{lq}^{(3)} \ _{p,r,s,t} \end{array}$	$\left (ar{l}_p'\gamma_\mu au^Il_r')(ar{q}_s'\gamma^\mu au^Iq_t') ight $
11	\mathcal{O}_{qe}	$(\bar{q}_p'\gamma_\mu q_r')(\bar{e}_s'\gamma^\mu e_t')$	$\mathcal{O}_{eu}_{p,r,s,t}$	$(\bar{e}_p'\gamma_\mu e_r')(\bar{u}_s'\gamma^\mu u_t')$	$\mathcal{O}_{ed} \ _{p,r,s,t}$	$(\bar{e}_p'\gamma_\mu e_r')(\bar{d}_s'\gamma^\mu d_t')$
	$\mathcal{O}_{lu}_{r,r,s,t}$	$(ar{l}_n'\gamma_\mu l_r')(ar{u}_s'\gamma^\mu u_t')$	$\mathcal{O}_{ld}_{p,r}$	$(\bar{l}_p'\gamma_\mu l_r')(\bar{d}_s'\gamma^\mu d_t')$	$\mathcal{O}_{ll} \ _{p,r,s,t}$	$(\bar{l}_p'\gamma_\mu l_r')(\bar{l}_s'\gamma^\mu l_t')$

Effect of loop interactions

W³ operator contributes at loop level

Influence grows with energy

Restoration of interference

$$A_{LL,u}^{NLO} = A_{LL,u}^{SMEFT} \left(1 - \left[\frac{3sv^2}{\Lambda^2 M_Z^2 (1 + 2c_W^2)} \right] \left\{ \frac{g^3 \mathcal{C}_W}{32\pi^2} \right\} \right)$$

$$A_{LL,d}^{NLO} = A_{LL,d}^{SMEFT} \left(1 + \left[\frac{3sv^2}{\Lambda^2 M_Z^2 (1 - 4c_W^2)} \right] \left\{ \frac{g^3 \mathcal{C}_W}{32\pi^2} \right\} \right)$$

Kinematic distributions

Effect of W³ operator subdominant compared to 4-fermion operator, yet visible at high energies

(operator sizes taken at current limits)

Predicting eventual reach

8 TeV measurements in high energy bins dominated by statistical uncertainties

Goes up to 2 TeV in invariant mass

Predicting eventual reach

13 TeV currently goes up to 3 TeV dilepton mass

Maximal sensitivity limited by systematics in high energy bins, roughly 5%

Predicting eventual reach

Solid: 8 TeV

Dashed: 13 TeV projection

Blue: S parameter from Gfitter

Red: VV production

Summary

Loop effects of SMEFT important for eventual NLO global fit

Especially useful when interference between SM and EFT operators is suppressed

Z decay: complementary bounds on operators that only contribute at loop level

Drell-Yan: access NLO effects as well as gain from high energy

